Sunday 16 August 2009

gold

Gold (pronounced /ˈɡoʊld/) is a chemical element with the symbol Au (Latin: aurum) and an atomic number of 79. It has been a highly sought-after precious metal in jewelry, in sculpture, and for ornamentation since the beginning of recorded history. The metal occurs as nuggets or grains in rocks, in veins and in alluvial deposits. Gold is dense, soft, shiny and the most malleable and ductile pure metal known. Pure gold has a bright yellow color and luster traditionally considered attractive, which it maintains without oxidizing in air or water. It is one of the coinage metals and formed the basis for the gold standard used before the collapse of the Bretton Woods system in 1971.

At the end of 2006, it was estimated that all the gold ever mined totaled 158,000 tonnes. [1] This can be represented by a cube with an edge length of just 20.2 meters. Modern industrial uses include dentistry and electronics, where gold has traditionally found use because of its good resistance to oxidative corrosion and excellent quality as a conductor of electricity. Chemically, gold is a transition metal and can form trivalent and univalent cations upon solvation. At STP it is attacked by aqua regia (a mixture of acids), forming chloroauric acid and by alkaline solutions of cyanide but not by single acids such as hydrochloric, nitric or sulfuric acids. Gold dissolves in mercury, forming amalgam alloys, but does not react with it. Since gold is insoluble in nitric acid which will dissolve silver and base metals, this is exploited as the basis of the gold refining technique known as "inquartation and parting". Nitric acid has long been used to confirm the presence of gold in items, and this is the origin of the colloquial term "acid test", referring to a gold standard test for genuine value.


  • In medieval times, gold was often seen as beneficial for the health, in the belief that something that rare and beautiful could not be anything but healthy. Even some modern esotericists and forms of alternative medicine assign metallic gold a healing power.[7] Some gold salts do have anti-inflammatory properties and are used as pharmaceuticals in the treatment of arthritis and other similar conditions. [8] However, only salts and radioisotopes of gold are of pharmacological value, as elemental (metallic) gold is inert to all chemicals it encounters inside the body.
  • In modern times injectable gold has been proven to help to reduce the pain and swelling of rheumatoid arthritis and tuberculosis.[8][9]
  • Dentistry. Gold alloys are used in restorative dentistry, especially in tooth restorations, such as crowns and permanent bridges. The gold alloys' slight malleability facilitates the creation of a superior molar mating surface with other teeth and produces results that are generally more satisfactory than those produced by the creation of porcelain crowns. The use of gold crowns in more prominent teeth such as incisors is favored in some cultures and discouraged in others.
  • Colloidal gold (colloidal sols of gold nanoparticles) in water are intensely red-colored, and can be made with tightly-controlled particle sizes up to a few tens of nm across by reduction of gold chloride with citrate or ascorbate ions. Colloidal gold is used in research applications in medicine, biology and materials science. The technique of immunogold labeling exploits the ability of the gold particles to adsorb protein molecules onto their surfaces. Colloidal gold particles coated with specific antibodies can be used as probes for the presence and position of antigens on the surfaces of cells (Faulk and Taylor 1979). In ultrathin sections of tissues viewed by electron microscopy, the immunogold labels appear as extremely dense round spots at the position of the antigen (Roth et al. 1980). Colloidal gold is also the form of gold used as gold paint on ceramics prior to firing.
  • Gold, or alloys of gold and palladium, are applied as conductive coating to biological specimens and other non-conducting materials such as plastics and glass to be viewed in a scanning electron microscope. The coating, which is usually applied by sputtering with an argon plasma, has a triple role in this application. Gold's very high electrical conductivity drains electrical charge to earth, and its very high density provides stopping power for electrons in the SEM's electron beam, helping to limit the depth to which the electron beam penetrates the specimen. This improves definition of the position and topography of the specimen surface and increases the spatial resolution of the image. Gold also produces a high output of secondary electrons when irradiated by an electron beam, and these low-energy electrons are the most commonly-used signal source used in the scanning electron microscope.
  • The isotope gold-198, (half-life: 2.7 days) is used in some cancer treatments and for treating other diseases.[10]

Food and drink

  • Gold can be used in food and has the E Number 175.[11]
  • Gold leaf, flake or dust is used on and in some gourmet foods, notably sweets and drinks as decorative ingredient.[12] Gold flake was used by the nobility in Medieval Europe as a decoration in food and drinks, in the form of leaf, flakes or dust, either to demonstrate the host's wealth or in the belief that something that valuable and rare must be beneficial for one's health.
  • Goldwasser (English: Goldwater) is a traditional herbal liqueur produced in Gdańsk, Poland, and Schwabach, Germany, and contains flakes of gold leaf. There are also some expensive (~$1000) cocktails which contain flakes of gold leaf[13]. However, since metallic gold is inert to all body chemistry, it adds no taste nor has it any other nutritional effect and leaves the body unaltered.[14]

  • Gold solder is used for joining the components of gold jewelry by high-temperature hard soldering or brazing. If the work is to be of hallmarking quality, gold solder must match the carat weight of the work, and alloy formulas are manufactured in most industry-standard carat weights to color match yellow and white gold. Gold solder is usually made in at least three melting-point ranges referred to as Easy, Medium and Hard. By using the hard, high-melting point solder first, followed by solders with progressively lower melting points, goldsmiths can assemble complex items with several separate soldered joints.
  • Gold can be made into thread and used in embroidery.
  • Gold is ductile and malleable, meaning it can be drawn into very thin wire and can be beaten into very thin sheets known as gold leaf.
  • Gold produces a deep, intense red color when used as a coloring agent in cranberry glass.
  • In photography, gold toners are used to shift the color of silver bromide black and white prints towards brown or blue tones, or to increase their stability. Used on sepia-toned prints, gold toners produce red tones. Kodak published formulas for several types of gold toners, which use gold as the chloride (Kodak, 2006).
  • As gold is a good reflector of electromagnetic radiation such as infrared and visible light as well as radio waves, it is used for the protective coatings on many artificial satellites, in infrared protective faceplates in thermal protection suits and astronauts' helmets and in electronic warfare planes like the EA-6B Prowler.
  • Gold is used as the reflective layer on some high-end CDs.
  • Automobiles may use gold for heat insulation. McLaren uses gold foil in the engine compartment of its F1 model.[15]
  • Gold can be manufactured so thin that it appears transparent. It is used in some aircraft cockpit windows for de-icing or anti-icing by passing electricity through it. The heat produced by the resistance of the gold is enough to deter ice from forming.[16]

No comments:

Post a Comment